3.2.9 \(\int \frac {(d^2-e^2 x^2)^{5/2}}{x^2 (d+e x)} \, dx\) [109]

3.2.9.1 Optimal result
3.2.9.2 Mathematica [A] (verified)
3.2.9.3 Rubi [A] (verified)
3.2.9.4 Maple [A] (verified)
3.2.9.5 Fricas [A] (verification not implemented)
3.2.9.6 Sympy [C] (verification not implemented)
3.2.9.7 Maxima [A] (verification not implemented)
3.2.9.8 Giac [A] (verification not implemented)
3.2.9.9 Mupad [F(-1)]

3.2.9.1 Optimal result

Integrand size = 27, antiderivative size = 115 \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x^2 (d+e x)} \, dx=-\frac {1}{2} d e (2 d+3 e x) \sqrt {d^2-e^2 x^2}-\frac {(3 d+e x) \left (d^2-e^2 x^2\right )^{3/2}}{3 x}-\frac {3}{2} d^3 e \arctan \left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )+d^3 e \text {arctanh}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right ) \]

output
-1/3*(e*x+3*d)*(-e^2*x^2+d^2)^(3/2)/x-3/2*d^3*e*arctan(e*x/(-e^2*x^2+d^2)^ 
(1/2))+d^3*e*arctanh((-e^2*x^2+d^2)^(1/2)/d)-1/2*d*e*(3*e*x+2*d)*(-e^2*x^2 
+d^2)^(1/2)
 
3.2.9.2 Mathematica [A] (verified)

Time = 0.36 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.22 \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x^2 (d+e x)} \, dx=\frac {\sqrt {d^2-e^2 x^2} \left (-6 d^3-8 d^2 e x-3 d e^2 x^2+2 e^3 x^3\right )}{6 x}+3 d^3 e \arctan \left (\frac {e x}{\sqrt {d^2}-\sqrt {d^2-e^2 x^2}}\right )+\left (d^2\right )^{3/2} e \log (x)-\left (d^2\right )^{3/2} e \log \left (\sqrt {d^2}-\sqrt {d^2-e^2 x^2}\right ) \]

input
Integrate[(d^2 - e^2*x^2)^(5/2)/(x^2*(d + e*x)),x]
 
output
(Sqrt[d^2 - e^2*x^2]*(-6*d^3 - 8*d^2*e*x - 3*d*e^2*x^2 + 2*e^3*x^3))/(6*x) 
 + 3*d^3*e*ArcTan[(e*x)/(Sqrt[d^2] - Sqrt[d^2 - e^2*x^2])] + (d^2)^(3/2)*e 
*Log[x] - (d^2)^(3/2)*e*Log[Sqrt[d^2] - Sqrt[d^2 - e^2*x^2]]
 
3.2.9.3 Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.407, Rules used = {566, 536, 535, 25, 27, 538, 224, 216, 243, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x^2 (d+e x)} \, dx\)

\(\Big \downarrow \) 566

\(\displaystyle \int \frac {(d-e x) \left (d^2-e^2 x^2\right )^{3/2}}{x^2}dx\)

\(\Big \downarrow \) 536

\(\displaystyle \int \frac {\left (-e d^2-3 e^2 x d\right ) \sqrt {d^2-e^2 x^2}}{x}dx-\frac {(3 d+e x) \left (d^2-e^2 x^2\right )^{3/2}}{3 x}\)

\(\Big \downarrow \) 535

\(\displaystyle \frac {1}{2} d^2 \int -\frac {d e (2 d+3 e x)}{x \sqrt {d^2-e^2 x^2}}dx-\frac {1}{2} d e (2 d+3 e x) \sqrt {d^2-e^2 x^2}-\frac {(3 d+e x) \left (d^2-e^2 x^2\right )^{3/2}}{3 x}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {1}{2} d^2 \int \frac {d e (2 d+3 e x)}{x \sqrt {d^2-e^2 x^2}}dx-\frac {1}{2} d e (2 d+3 e x) \sqrt {d^2-e^2 x^2}-\frac {(3 d+e x) \left (d^2-e^2 x^2\right )^{3/2}}{3 x}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {1}{2} d^3 e \int \frac {2 d+3 e x}{x \sqrt {d^2-e^2 x^2}}dx-\frac {1}{2} d e (2 d+3 e x) \sqrt {d^2-e^2 x^2}-\frac {(3 d+e x) \left (d^2-e^2 x^2\right )^{3/2}}{3 x}\)

\(\Big \downarrow \) 538

\(\displaystyle -\frac {1}{2} d^3 e \left (3 e \int \frac {1}{\sqrt {d^2-e^2 x^2}}dx+2 d \int \frac {1}{x \sqrt {d^2-e^2 x^2}}dx\right )-\frac {1}{2} d e (2 d+3 e x) \sqrt {d^2-e^2 x^2}-\frac {(3 d+e x) \left (d^2-e^2 x^2\right )^{3/2}}{3 x}\)

\(\Big \downarrow \) 224

\(\displaystyle -\frac {1}{2} d^3 e \left (2 d \int \frac {1}{x \sqrt {d^2-e^2 x^2}}dx+3 e \int \frac {1}{\frac {e^2 x^2}{d^2-e^2 x^2}+1}d\frac {x}{\sqrt {d^2-e^2 x^2}}\right )-\frac {1}{2} d e (2 d+3 e x) \sqrt {d^2-e^2 x^2}-\frac {(3 d+e x) \left (d^2-e^2 x^2\right )^{3/2}}{3 x}\)

\(\Big \downarrow \) 216

\(\displaystyle -\frac {1}{2} d^3 e \left (2 d \int \frac {1}{x \sqrt {d^2-e^2 x^2}}dx+3 \arctan \left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )\right )-\frac {1}{2} d e (2 d+3 e x) \sqrt {d^2-e^2 x^2}-\frac {(3 d+e x) \left (d^2-e^2 x^2\right )^{3/2}}{3 x}\)

\(\Big \downarrow \) 243

\(\displaystyle -\frac {1}{2} d^3 e \left (d \int \frac {1}{x^2 \sqrt {d^2-e^2 x^2}}dx^2+3 \arctan \left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )\right )-\frac {1}{2} d e (2 d+3 e x) \sqrt {d^2-e^2 x^2}-\frac {(3 d+e x) \left (d^2-e^2 x^2\right )^{3/2}}{3 x}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {1}{2} d^3 e \left (3 \arctan \left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )-\frac {2 d \int \frac {1}{\frac {d^2}{e^2}-\frac {x^4}{e^2}}d\sqrt {d^2-e^2 x^2}}{e^2}\right )-\frac {1}{2} d e (2 d+3 e x) \sqrt {d^2-e^2 x^2}-\frac {(3 d+e x) \left (d^2-e^2 x^2\right )^{3/2}}{3 x}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {1}{2} d^3 e \left (3 \arctan \left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )-2 \text {arctanh}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right )\right )-\frac {1}{2} d e (2 d+3 e x) \sqrt {d^2-e^2 x^2}-\frac {(3 d+e x) \left (d^2-e^2 x^2\right )^{3/2}}{3 x}\)

input
Int[(d^2 - e^2*x^2)^(5/2)/(x^2*(d + e*x)),x]
 
output
-1/2*(d*e*(2*d + 3*e*x)*Sqrt[d^2 - e^2*x^2]) - ((3*d + e*x)*(d^2 - e^2*x^2 
)^(3/2))/(3*x) - (d^3*e*(3*ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]] - 2*ArcTanh[S 
qrt[d^2 - e^2*x^2]/d]))/2
 

3.2.9.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 243
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/2   Subst[In 
t[x^((m - 1)/2)*(a + b*x)^p, x], x, x^2], x] /; FreeQ[{a, b, m, p}, x] && I 
ntegerQ[(m - 1)/2]
 

rule 535
Int[(((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_))/(x_), x_Symbol] :> Sim 
p[(c*(2*p + 1) + 2*d*p*x)*((a + b*x^2)^p/(2*p*(2*p + 1))), x] + Simp[a/(2*p 
 + 1)   Int[(c*(2*p + 1) + 2*d*p*x)*((a + b*x^2)^(p - 1)/x), x], x] /; Free 
Q[{a, b, c, d}, x] && GtQ[p, 0] && IntegerQ[2*p]
 

rule 536
Int[(((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_))/(x_)^2, x_Symbol] :> S 
imp[(-(2*c*p - d*x))*((a + b*x^2)^p/(2*p*x)), x] + Int[(a*d + 2*b*c*p*x)*(( 
a + b*x^2)^(p - 1)/x), x] /; FreeQ[{a, b, c, d}, x] && GtQ[p, 0] && Integer 
Q[2*p]
 

rule 538
Int[((c_) + (d_.)*(x_))/((x_)*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> Simp 
[c   Int[1/(x*Sqrt[a + b*x^2]), x], x] + Simp[d   Int[1/Sqrt[a + b*x^2], x] 
, x] /; FreeQ[{a, b, c, d}, x]
 

rule 566
Int[((x_)^(m_)*((a_) + (b_.)*(x_)^2)^(p_))/((c_) + (d_.)*(x_)), x_Symbol] : 
> Int[x^m*(a/c + b*(x/d))*(a + b*x^2)^(p - 1), x] /; FreeQ[{a, b, c, d}, x] 
 && EqQ[b*c^2 + a*d^2, 0] && GtQ[p, 0]
 
3.2.9.4 Maple [A] (verified)

Time = 0.41 (sec) , antiderivative size = 164, normalized size of antiderivative = 1.43

method result size
risch \(-\frac {d^{3} \sqrt {-e^{2} x^{2}+d^{2}}}{x}+\frac {e^{3} x^{2} \sqrt {-e^{2} x^{2}+d^{2}}}{3}-\frac {4 e \,d^{2} \sqrt {-e^{2} x^{2}+d^{2}}}{3}+\frac {e \,d^{4} \ln \left (\frac {2 d^{2}+2 \sqrt {d^{2}}\, \sqrt {-e^{2} x^{2}+d^{2}}}{x}\right )}{\sqrt {d^{2}}}-\frac {3 d^{3} e^{2} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{2 \sqrt {e^{2}}}-\frac {d \,e^{2} x \sqrt {-e^{2} x^{2}+d^{2}}}{2}\) \(164\)
default \(\frac {-\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {7}{2}}}{d^{2} x}-\frac {6 e^{2} \left (\frac {x \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}{6}+\frac {5 d^{2} \left (\frac {x \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}{4}+\frac {3 d^{2} \left (\frac {x \sqrt {-e^{2} x^{2}+d^{2}}}{2}+\frac {d^{2} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{2 \sqrt {e^{2}}}\right )}{4}\right )}{6}\right )}{d^{2}}}{d}-\frac {e \left (\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}{5}+d^{2} \left (\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}{3}+d^{2} \left (\sqrt {-e^{2} x^{2}+d^{2}}-\frac {d^{2} \ln \left (\frac {2 d^{2}+2 \sqrt {d^{2}}\, \sqrt {-e^{2} x^{2}+d^{2}}}{x}\right )}{\sqrt {d^{2}}}\right )\right )\right )}{d^{2}}+\frac {e \left (\frac {\left (-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {5}{2}}}{5}+d e \left (-\frac {\left (-2 \left (x +\frac {d}{e}\right ) e^{2}+2 d e \right ) \left (-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}{8 e^{2}}+\frac {3 d^{2} \left (-\frac {\left (-2 \left (x +\frac {d}{e}\right ) e^{2}+2 d e \right ) \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{4 e^{2}}+\frac {d^{2} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}\right )}{2 \sqrt {e^{2}}}\right )}{4}\right )\right )}{d^{2}}\) \(430\)

input
int((-e^2*x^2+d^2)^(5/2)/x^2/(e*x+d),x,method=_RETURNVERBOSE)
 
output
-d^3*(-e^2*x^2+d^2)^(1/2)/x+1/3*e^3*x^2*(-e^2*x^2+d^2)^(1/2)-4/3*e*d^2*(-e 
^2*x^2+d^2)^(1/2)+e*d^4/(d^2)^(1/2)*ln((2*d^2+2*(d^2)^(1/2)*(-e^2*x^2+d^2) 
^(1/2))/x)-3/2*d^3*e^2/(e^2)^(1/2)*arctan((e^2)^(1/2)*x/(-e^2*x^2+d^2)^(1/ 
2))-1/2*d*e^2*x*(-e^2*x^2+d^2)^(1/2)
 
3.2.9.5 Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.07 \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x^2 (d+e x)} \, dx=\frac {18 \, d^{3} e x \arctan \left (-\frac {d - \sqrt {-e^{2} x^{2} + d^{2}}}{e x}\right ) - 6 \, d^{3} e x \log \left (-\frac {d - \sqrt {-e^{2} x^{2} + d^{2}}}{x}\right ) - 8 \, d^{3} e x + {\left (2 \, e^{3} x^{3} - 3 \, d e^{2} x^{2} - 8 \, d^{2} e x - 6 \, d^{3}\right )} \sqrt {-e^{2} x^{2} + d^{2}}}{6 \, x} \]

input
integrate((-e^2*x^2+d^2)^(5/2)/x^2/(e*x+d),x, algorithm="fricas")
 
output
1/6*(18*d^3*e*x*arctan(-(d - sqrt(-e^2*x^2 + d^2))/(e*x)) - 6*d^3*e*x*log( 
-(d - sqrt(-e^2*x^2 + d^2))/x) - 8*d^3*e*x + (2*e^3*x^3 - 3*d*e^2*x^2 - 8* 
d^2*e*x - 6*d^3)*sqrt(-e^2*x^2 + d^2))/x
 
3.2.9.6 Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 3.16 (sec) , antiderivative size = 389, normalized size of antiderivative = 3.38 \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x^2 (d+e x)} \, dx=d^{3} \left (\begin {cases} \frac {i d}{x \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} + i e \operatorname {acosh}{\left (\frac {e x}{d} \right )} - \frac {i e^{2} x}{d \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} & \text {for}\: \left |{\frac {e^{2} x^{2}}{d^{2}}}\right | > 1 \\- \frac {d}{x \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} - e \operatorname {asin}{\left (\frac {e x}{d} \right )} + \frac {e^{2} x}{d \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} & \text {otherwise} \end {cases}\right ) - d^{2} e \left (\begin {cases} \frac {d^{2}}{e x \sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}} - d \operatorname {acosh}{\left (\frac {d}{e x} \right )} - \frac {e x}{\sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}} & \text {for}\: \left |{\frac {d^{2}}{e^{2} x^{2}}}\right | > 1 \\- \frac {i d^{2}}{e x \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}} + i d \operatorname {asin}{\left (\frac {d}{e x} \right )} + \frac {i e x}{\sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}} & \text {otherwise} \end {cases}\right ) - d e^{2} \left (\begin {cases} \frac {d^{2} \left (\begin {cases} \frac {\log {\left (- 2 e^{2} x + 2 \sqrt {- e^{2}} \sqrt {d^{2} - e^{2} x^{2}} \right )}}{\sqrt {- e^{2}}} & \text {for}\: d^{2} \neq 0 \\\frac {x \log {\left (x \right )}}{\sqrt {- e^{2} x^{2}}} & \text {otherwise} \end {cases}\right )}{2} + \frac {x \sqrt {d^{2} - e^{2} x^{2}}}{2} & \text {for}\: e^{2} \neq 0 \\x \sqrt {d^{2}} & \text {otherwise} \end {cases}\right ) + e^{3} \left (\begin {cases} - \frac {d^{2} \sqrt {d^{2} - e^{2} x^{2}}}{3 e^{2}} + \frac {x^{2} \sqrt {d^{2} - e^{2} x^{2}}}{3} & \text {for}\: e^{2} \neq 0 \\\frac {x^{2} \sqrt {d^{2}}}{2} & \text {otherwise} \end {cases}\right ) \]

input
integrate((-e**2*x**2+d**2)**(5/2)/x**2/(e*x+d),x)
 
output
d**3*Piecewise((I*d/(x*sqrt(-1 + e**2*x**2/d**2)) + I*e*acosh(e*x/d) - I*e 
**2*x/(d*sqrt(-1 + e**2*x**2/d**2)), Abs(e**2*x**2/d**2) > 1), (-d/(x*sqrt 
(1 - e**2*x**2/d**2)) - e*asin(e*x/d) + e**2*x/(d*sqrt(1 - e**2*x**2/d**2) 
), True)) - d**2*e*Piecewise((d**2/(e*x*sqrt(d**2/(e**2*x**2) - 1)) - d*ac 
osh(d/(e*x)) - e*x/sqrt(d**2/(e**2*x**2) - 1), Abs(d**2/(e**2*x**2)) > 1), 
 (-I*d**2/(e*x*sqrt(-d**2/(e**2*x**2) + 1)) + I*d*asin(d/(e*x)) + I*e*x/sq 
rt(-d**2/(e**2*x**2) + 1), True)) - d*e**2*Piecewise((d**2*Piecewise((log( 
-2*e**2*x + 2*sqrt(-e**2)*sqrt(d**2 - e**2*x**2))/sqrt(-e**2), Ne(d**2, 0) 
), (x*log(x)/sqrt(-e**2*x**2), True))/2 + x*sqrt(d**2 - e**2*x**2)/2, Ne(e 
**2, 0)), (x*sqrt(d**2), True)) + e**3*Piecewise((-d**2*sqrt(d**2 - e**2*x 
**2)/(3*e**2) + x**2*sqrt(d**2 - e**2*x**2)/3, Ne(e**2, 0)), (x**2*sqrt(d* 
*2)/2, True))
 
3.2.9.7 Maxima [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.26 \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x^2 (d+e x)} \, dx=-\frac {3 \, d^{3} e^{2} \arcsin \left (\frac {e^{2} x}{d \sqrt {e^{2}}}\right )}{2 \, \sqrt {e^{2}}} + d^{3} e \log \left (\frac {2 \, d^{2}}{{\left | x \right |}} + \frac {2 \, \sqrt {-e^{2} x^{2} + d^{2}} d}{{\left | x \right |}}\right ) - \frac {1}{2} \, \sqrt {-e^{2} x^{2} + d^{2}} d e^{2} x - \sqrt {-e^{2} x^{2} + d^{2}} d^{2} e - \frac {1}{3} \, {\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}} e - \frac {\sqrt {-e^{2} x^{2} + d^{2}} d^{3}}{x} \]

input
integrate((-e^2*x^2+d^2)^(5/2)/x^2/(e*x+d),x, algorithm="maxima")
 
output
-3/2*d^3*e^2*arcsin(e^2*x/(d*sqrt(e^2)))/sqrt(e^2) + d^3*e*log(2*d^2/abs(x 
) + 2*sqrt(-e^2*x^2 + d^2)*d/abs(x)) - 1/2*sqrt(-e^2*x^2 + d^2)*d*e^2*x - 
sqrt(-e^2*x^2 + d^2)*d^2*e - 1/3*(-e^2*x^2 + d^2)^(3/2)*e - sqrt(-e^2*x^2 
+ d^2)*d^3/x
 
3.2.9.8 Giac [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 177, normalized size of antiderivative = 1.54 \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x^2 (d+e x)} \, dx=-\frac {3 \, d^{3} e^{2} \arcsin \left (\frac {e x}{d}\right ) \mathrm {sgn}\left (d\right ) \mathrm {sgn}\left (e\right )}{2 \, {\left | e \right |}} + \frac {d^{3} e^{4} x}{2 \, {\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )} {\left | e \right |}} + \frac {d^{3} e^{2} \log \left (\frac {{\left | -2 \, d e - 2 \, \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |} \right |}}{2 \, e^{2} {\left | x \right |}}\right )}{{\left | e \right |}} - \frac {{\left (d e + \sqrt {-e^{2} x^{2} + d^{2}} {\left | e \right |}\right )} d^{3}}{2 \, x {\left | e \right |}} - \frac {1}{6} \, \sqrt {-e^{2} x^{2} + d^{2}} {\left (8 \, d^{2} e - {\left (2 \, e^{3} x - 3 \, d e^{2}\right )} x\right )} \]

input
integrate((-e^2*x^2+d^2)^(5/2)/x^2/(e*x+d),x, algorithm="giac")
 
output
-3/2*d^3*e^2*arcsin(e*x/d)*sgn(d)*sgn(e)/abs(e) + 1/2*d^3*e^4*x/((d*e + sq 
rt(-e^2*x^2 + d^2)*abs(e))*abs(e)) + d^3*e^2*log(1/2*abs(-2*d*e - 2*sqrt(- 
e^2*x^2 + d^2)*abs(e))/(e^2*abs(x)))/abs(e) - 1/2*(d*e + sqrt(-e^2*x^2 + d 
^2)*abs(e))*d^3/(x*abs(e)) - 1/6*sqrt(-e^2*x^2 + d^2)*(8*d^2*e - (2*e^3*x 
- 3*d*e^2)*x)
 
3.2.9.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x^2 (d+e x)} \, dx=\int \frac {{\left (d^2-e^2\,x^2\right )}^{5/2}}{x^2\,\left (d+e\,x\right )} \,d x \]

input
int((d^2 - e^2*x^2)^(5/2)/(x^2*(d + e*x)),x)
 
output
int((d^2 - e^2*x^2)^(5/2)/(x^2*(d + e*x)), x)